Detecting Diseases in Medical Prescriptions Using Data Mining Tools and Combining Techniques
نویسندگان
چکیده
Data about the prevalence of communicable and non-communicable diseases, as one of the most important categories of epidemiological data, is used for interpreting health status of communities. This study aims to calculate the prevalence of outpatient diseases through the characterization of outpatient prescriptions. The data used in this study is collected from 1412 prescriptions for various types of diseases from which we have focused on the identification of ten diseases. In this study, data mining tools are used to identify diseases for which prescriptions are written. In order to evaluate the performances of these methods, we compare the results with Naïve method. Then, combining methods are used to improve the results. Results showed that Support Vector Machine, with an accuracy of 95.32%, shows better performance than the other methods. The result of Naive method, with an accuracy of 67.71%, is 20% worse than Nearest Neighbor method which has the lowest level of accuracy among the other classification algorithms. The results indicate that the implementation of data mining algorithms resulted in a good performance in characterization of outpatient diseases. These results can help to choose appropriate methods for the classification of prescriptions in larger scales.
منابع مشابه
Detecting Diseases in Medical Prescriptions Using Data Mining Tools and Combining Techniques
Data about the prevalence of communicable and non-communicable diseases, as one of the most important categories of epidemiological data, is used for interpreting health status of communities. This study aims to calculate the prevalence of outpatient diseases through the characterization of outpatient prescriptions. The data used in this study is collected from 1412 prescriptions for various ty...
متن کاملDetecting Diseases in Medical Prescriptions Using Data Mining Tools and Combining Techniques
Data about the prevalence of communicable and non-communicable diseases, as one of the most important categories of epidemiological data, is used for interpreting health status of communities. This study aims to calculate the prevalence of outpatient diseases through the characterization of outpatient prescriptions. The data used in this study is collected from 1412 prescriptions for various ty...
متن کاملIdentification of the Patient Requirements Using Lean Six Sigma and Data Mining
Lean health care is one of new managing approaches putting the patient at the core of each change. Lean construction is based on visualization for understanding and prioritizing imporvments. By using only visualization techniques, so much important information could be missed. In order to prioritize and select improvements, it’s essential to integrate new analysis tools to achieve a good unders...
متن کاملبررسی کاربردهای داده کاوی در نظام سلامت
Introduction: Extensive amounts of data stored in medical databases require the development of specialized tools for accessing the data, data analysis, knowledge discovery, and the effective use of the data. Data mining is one of the most important methods. The article sketches the used Data Mining techniques, and illustrates their applicability to medical diagnostic and prognostic problems. ...
متن کاملA Case Study of the Impact of Parental Diseases on the Probability of Hypertension Using Data Mining Techniques
Introduction: Hypertension is one of the most common health problems. As it has a major impact on other serious diseases such as cardiovascular diseases and strokes, and due to not having any specific symptoms, it is known as a silent killer. Therefore, proper diagnosis, control, and treatment of hypertension is crucial in health care systems and will indeed prevent the development of the other...
متن کامل